Comparative in vitro study regarding the biocompatibility of titanium-base composites infiltrated with hydroxyapatite or silicatitanate

نویسندگان

  • Ioana-Carmen Brie
  • Olga Soritau
  • Noemi Dirzu
  • Cristian Berce
  • Adriana Vulpoi
  • Catalin Popa
  • Milica Todea
  • Simion Simon
  • Maria Perde-Schrepler
  • Piroska Virag
  • Otilia Barbos
  • Gabriela Chereches
  • Petru Berce
  • Valentin Cernea
چکیده

BACKGROUND The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol-gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation. RESULTS The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8-9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants. CONCLUSIONS The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites

In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...

متن کامل

Evaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites

In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...

متن کامل

Comparative Evaluation of Microgap at the Interface of Titanium and Zirconium Abutments Following Oblique Cyclic Loading: An in vitro Study

Abstract   Background and Aim : Microgap in the implant-abutment interface is one of the main challenges in the treatment of two-piece implants. This study aimed to investigate the effect of two types of abutments (zirconia and titanium) on microgap at implant-abutment interface area under oblique cyclic loading in vitro. Methods and Materials In this in vitro study, 12 implant-abutment assemb...

متن کامل

Comparative Evaluation of Microleakage at the Interface of Titanium and Zirconium Abutments Following Oblique Cyclic Loading: An in vitro Study

Abstract Background and aim: Oral microbiota could proliferate the microspace between the implant and abutment, thereby cause inflammation in the peri-implant tissues and adjacent bone. This study aimed to investigate the effect of two types of abutments (zirconia and titanium) on microleakage at implant-abutment interface area under oblique cyclic loading in vitro. Materials and methods:In thi...

متن کامل

Biocompatibility of Hydroxyapatite-Alumina and Hydroxyapatite-Zirconia Composites including Commercial Inert Glass (CIG) as a Ternary Component

Hydroxyapatite (HA), chemical formula Ca10(PO4)6(OH)2, is a very popular bioceramic for orthopedic and dental applications. Although HA has excellent biocompatibility, its inferior mechanical properties make it unsuitable for load-bearing implant applications. Therefore,HA should be strengthened by a secondary phase to produce a composite that possesses robust mechanical properties. The aim of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014